How Mand Labs’ Teach Electronics Program can make your STEM classrooms more engaging, hands-on & fun

Women’s History Month Special: Stories of Little Women – 5 Kate Stack
March 28, 2019
US STEM education system needs an overhaul. Is emulating Finland’s system the answer?
May 30, 2019
 

Did you know that according to the National Math And Science Initiative (NMSI), 69% of school graduates are not prepared to take up college level science and math? This clearly substantiates the fact that students do not get the required exposure, support and guidance from their parents and teachers during the formative years.

Research reveals that learners can retain only 5 percent of whatever is presented to them through lecture and 30 percent through demonstration. However, if you include hands-on learning in your process of teaching, the retention rate is as high as 75 percent.


Considering these factors, Mand Labs Teach Electronics Program focuses on APPB Learning (activity-based, problem-based, project-based learning). This program plays a crucial role in helping educators/teachers to effectively teach hands-on projects in the field of physics, electrical and electronics. The content-rich and curriculum-driven program endeavours to make STEM classrooms more engaging and fun for students with an exciting mix of real-world projects and activities further fuelled with quizzes, contests, and more.

Let’s walk you through:

Demonstrate laws of physics with ease and confidence

Built and tested on the strong fundamental of do-it-yourself approach, the larger goal of our program is to make children realize that technology is not technical and no matter how complex any technology seems; it can always be broken down into smaller components, logic and fundamental laws of physics.

Our complete curriculum will guide you on how to demonstrate abstract concepts of physics and teach electronics in a fun-interactive way using real-world hands-on projects. For instance, the best way to learn “transistor as an amplifier” is to actually build it and then use math and equations to test out its working. Another example to demonstrate EMI (electro-magnetic induction) is to create a small generator using a DC motor and likewise.

You will also be able to demonstrate Kirchhoff’s voltage law, Kirchhoff’s current law, Ohm’s law, The Esaki Effect, Electromagnetic Induction, Time Constant Circuits with ease. There are ample examples in our books and PDF guides that will help you to learn how each discrete component works be it transistors, LEDs, capacitors, or relays and more and how do we connect them through logic to build something more meaningful. This experiential learning process will imbibe critical thinking and computation acumen in children. Our intention is to help students realize that each component can be treated as a building block to build logic.

By teaching children how to apply concepts of physics and use math in real-life projects, you will not only make your classroom challenging and exciting, but also help your students to be collaborative and imbibe a sense of teamwork in them.



Create curiosity:

Norwegian psychologist, May-Britt Moser, had aptly said:

“It is so important for children to bloom and to be driven by their curiosity.”

To captivate children’s attention and make them curious, but most of all to get them interested in science and math in their formative years, it is important for the teacher to create an environment for them where they are actively involved in their own learning and where he/she is able to engage them and spark their curiosity.

Mand Labs Teach Electronics Program focuses on creating limitless options for children to be curious, to investigate and to go in depth using interactive do-it-yourself activities and projects. The program that comprises project-based learning curriculum, including, books, videos, step-by-step project building guides (PDF), classroom lectures (PDF) and workshop presentations (PDF) will help you to engage your students in hands-on experiments that embark curiosity by encouraging students to ask questions combined with the joy of building circuits from scratch; it is a journey of multiple learning levels.

For instance, imagine each kid rotating the DC motor to flash an LED and then try to figure out why the motion produces electricity, at what voltage does the LED glow, and exploring the principle of EMI (electromagnetic induction). This simple yet fun experiment will create excitement while making them inquisitive and curious. To quote May-Britt Moser again,

“All children are born with stars in their eyes, and they are curious. It is important for teachers to be careful not to kill this curiosity…”

So, by engaging them with exciting do-it-yourself hands-on activities and letting them explore further on their own, you are already laying a strong foundation for them to be actively involved in their own learning.

Evaluate with contests & quizzes

Your job is incomplete if you do not gauge how your students have fared. The need for evaluation is crucial but how you evaluate them is even more crucial. If your evaluation process is not interesting to the students, you may hinder their learning.

Mand Labs Teach Electronics Program is built to make your evaluation process simple and fun with maximum participation from students. It is complete with quizzes and assessment questions that are all based on practical experience of students. Hosting quizzes in your classroom will not only spark interest among your students, but will also test the level of their comprehension.

To make your classroom even more engaging, our program will guide you on how to organise contests. This will ensure a competitive environment in your classroom. For instance, you can test the “fastest circuit maker” in your class and reward the winner. Or you can have an “Open Book Project Challenge”, wherein you let students use the books to create something that they have no idea about; or even better- who builds the “logic gates” first?

But for those of you who want to take this contest to an intra-school level and help in creating something new, help is at hand. Yes, when you organise your Annual Science & Technology Exhibition and hold a challenging circuit building contest like the H-Bridge, IR security alarm, logic gates etc. Mand Labs will sponsor the prizes and also guide you.



Conclusion:

Mand Labs Teach Electronics Program that is complete with rich curriculum for 25 hands-on hours, comprising hardware kits for students and educators, 60 projects, quizzes, classroom workbooks, and dedicated technical support is not just any of your run-of-the-mill program.

The program has been built after years of working closely with educators and students from across the globe. Developed after continuous research, testing and improvisation, the program will take you through a rigorous building process and analytics to make your classroom more relatable and interesting to students. What’s more? The transparent pricing matches no other. And our dedicated back-end technical support, comprising experienced engineers will be always there to guide you to run your annual program or whenever you need to troubleshoot.

Several schools that have been the early adopters of Mand Labs Teach Electronics Program have been able to make their classrooms dynamic, engaging, hands-on, competitive, collaborative, exciting, inquisitive and not to mention challenging.

So, let us know your thoughts? We are always looking for good ideas. Join our community and you never know, you might end up inspiring a bunch of students to create and build something bigger than themselves just like Miss Riley did in the biopic, October Sky.

To know more about the Teach Electronics Program, you can mail us at support@mandlabs.com.

Urmila Marak
Urmila Marak
Urmila, who is a Big Data and STEM enthusiast, works as the head of communications with Mand Labs. She is a believer in transformation of life and career through STEM. She can be reached on Twitter @umarak.